Sacrificial bonds heal bone

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture.

Properties of the organic matrix of bone as well as its function in the microstructure could be the key to the remarkable mechanical properties of bone. Previously, it was found that on the molecular level, calcium-mediated sacrificial bonds increased stiffness and enhanced energy dissipation in bone constituent molecules. Here we present evidence for how this sacrificial bond and hidden length...

متن کامل

Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.

Sacrificial bonds and hidden length (SBHL) in structural molecules provide a mechanism for energy dissipation at the nanoscale. It is hypothesized that their presence leads to greater fracture toughness than what is observed in materials without such features. Here, we investigate this hypothesis using a simplified model of a mineralized collagen fibril sliding on a polymeric interface with SBH...

متن کامل

Crack propagation in bone at the microscale: effect of the interfibrillar glue molecules with sacrificial bonds and hidden length

Sacrifi cial bonds and hidden length (SBHL) in structural molecules provide a mechanism for energy dissipation at the nanoscale. It is hypothesized that their presence leads to greater fracture toughness than what is observed in synthetic materials without such features. Here, we investigate this hypothesis using a simplifi ed model of a mineralized collagen fi bril sliding on a polymeric inter...

متن کامل

Sacrificial bonds in polymer brushes from rat tail tendon functioning as nanoscale velcro.

Polymers play an important role in many biological systems, so a fundamental understanding of their cross-links is crucial not only for the development of medicines but also for the development of biomimetic materials. The biomechanical movements of all mammals are aided by tendon fibrils. The self-organization and biomechanical functions of tendon fibrils are determined by the properties of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 2001

ISSN: 0028-0836,1476-4687

DOI: 10.1038/414699a